"Generalized des Cloizeaux" exponent for self-avoiding walks on the incipient percolation cluster.

نویسندگان

  • A Ordemann
  • M Porto
  • H Eduardo Roman
  • S Havlin
چکیده

We study the asymptotic shape of self-avoiding random walks (SAW) on the backbone of the incipient percolation cluster in d-dimensional lattices analytically. It is generally accepted that the configurational averaged probability distribution function for the end-to-end distance r of an N step SAW behaves as a power law for r-->0. In this work, we determine the corresponding exponent using scaling arguments, and show that our suggested "generalized des Cloizeaux" expression for the exponent is in excellent agreement with exact enumeration results in two and three dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Walking on fractals: diffusion and self-avoiding walks on percolation clusters

We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs...

متن کامل

Self-avoiding Walks on Random Networks of Resistors and Diodes

We study the self-avoiding walks (SAW) on a square lattice whose various degrees of randomness encompasses many different random networks, including the incipient clusters of the directed, mixed and isotropic bond percolation. We apply the position-space renormalization group (PSRG) method and demonstrate that within the framework of this method one is bound to find that the critical exponent v...

متن کامل

Self-avoiding walks on fractal spaces : exact results and Flory approximation

2014 Self-avoiding walks (SAW) explore the backbone of a fractal lattice, while random walks explore the full lattice. We show the existence of an intrinsic exponent for SAW and examine a simple Flory approximation that uses the spectral dimension of the backbone. Exact results for various fractal lattices show that this approximation is not very satisfactory and that properties of SAW depend o...

متن کامل

Probability Distribution of the Shortest Path on the Percolation Cluster, its Backbone and Skeleton

We consider the mean distribution functions Φ(r|l), ΦB(r|l), and ΦS(r|l), giving the probability that two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a shortest path of length l are separated by an Euclidean distance r. Following a scaling argument due to de Gennes for self-avoiding walks, we derive analytical expressions for the e...

متن کامل

Asymptotic scaling behavior of self-avoiding walks on critical percolation clusters.

We study self-avoiding walks on three-dimensional critical percolation clusters using a new exact enumeration method. It overcomes the exponential increase in computation time by exploiting the clusters' fractal nature. We enumerate walks of over 10^{4} steps, far more than has ever been possible. The scaling exponent ν for the end-to-end distance turns out to be smaller than previously thought...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 63 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001